SYNTHESIS AND CHARACTERIZATION OF 3-(4-ARYL-5H-6,7,-DIHYDROCYCLOPENTA[B]PYRIDIN-2-YL), 3-(4-ARYL-5,6,7,8-TETRAHYDROQUINOLIN-2-YL) AND 3-(5-HYDROXY-BIPHENYL-3-YL) COUMARINS USING PIPERIDINE AS A CATALYST

Mahesh K. Pandya ${ }^{1}$, Mehulsinh R. Chhasatia ${ }^{1}$, Nileshkumar D. Vala ${ }^{\mathbf{1}^{*}}$, Tapan H. Parekh ${ }^{\text {² }}$
${ }^{1}$ Department of Chemistry Sardar Patel University, Vallabh Vidyanagar, Gujarat, INDIA
${ }^{2}$ Department of Chemistry, Shree P. M. Patel Institute of Post Graduate Studies \& Research in Applied Science, Affiliated to Sardar Patel University, Vallabh Vidyanagar (Anand), Gujarat, (INDIA).
*Correspondence: nileshdv89@gmail.com

Abstract

A series of the synthesis of various 3-(4-aryl-5H-6,7-dihydro cyclopenta[b]pyridin-2yl) and 3-(4-aryl-5,6,7,8-tetrahydroquinolin-2-yl)coumarins using piperidine as a catalyst. The cyclopenta [b]pyridine and tetrahydroquinoline nuclei of these compounds have been built up by utilizing Krohnke's reaction.

Keywords: synthesis, coumrine, piperidine as catalyst, spectral analysis

1. Introduction

The survey of the literature reveals that a very large number of coumarin derivatives containing heterocyclic moieties are used in drugs and dyes. A large number of coumarin derivatives having heterocyclic moieties like benzimidazole, triazole, diazole, thiadiazole, oxadiazole, quinazoline, diazine etc. As substituent groups either in the lactone ring or in the benzene ring of coumarin is used as dyes or fluorescent whitening agents ${ }^{[\text {[-VII] }}$. Similarly variety of coumarin derivatives having nucleus like pyridine, indole, imidazole, thiazole, and triazole as substituent groups possesses important biological activities [VIII -X]. Thus, incorporation of another heterocyclic moiety in coumarin nucleus either as substituent or as a fused component changes the properties of parent coumarins and converts them into more useful derivatives.

Among the heterocyclic substituted coumarins, pyridyl substituted coumarins have a special importance due to their diverse physiological actions. A number of coumarin derivatives having pyridine substituted mainly at 3 - or 4 - position of the coumarin possess CNS depressant activity. R.B.Moffett synthesized number of 3-pyridyl and 4-pyridyl coumarins using modified Pechmann, Knoevenagel and Perkin reactions of pyridine acetic acid or pyridoyl acetic acid with substituted salicylaldehyde ${ }^{[\mathbf{X I}-\mathbf{x y]}}$.

2. Experimental

2.1 Preparation of 3-acetyl coumarin and 8-methoxy 3-acetyl coumarin.

a) $\mathrm{R}=\mathrm{H}$, b) $\mathrm{R}=\mathrm{OCH}_{3}$

In a 100 ml round bottom flask, a mixture of appropriate salicylaldehyde (0.1 mole), ethyl acetoacetate (0.1 mole) and 3-4 drops of piperidine was stirred for 10 minutes at room temperature. It was then heated for 30 minutes in water bath. A yellow solid obtained was taken out and washed with cold ether. It was recrystallized from chloroform-hexane.
a) 3-Acetyl coumarin: Yield: 65%, m.p: $119{ }^{\circ} \mathrm{C}$.
b) 8-Methoxy-3-acetyl coumarin: Yield: 62%, m.p: $174^{\circ} \mathrm{C}$.
2.2 Preparation of 1-[2(H)-1-benzopyran-3-yl]-3-aryl-prop-2-en-1-ones and 1-[8-methoxy-2(H)-1-benzopyran-3-yl]-3-aryl-prop-2-en-1-ones(Coumarinchalcones)(1a-l).

In a 100 ml round bottom flask, appropriate 3 -acetyl coumarin (0.01 mole) and appropriate aromatic aldehyde (0.015 mole) were taken in 50 ml of ethanol. Catalytic amount of piperidine $(1.0 \mathrm{ml})$ was added and the reaction mixture was stirred for 10 minutes at room temperature. The reaction mixture was then refluxed on water bath for 4 hours. It was allowed to come to room temperature. A solid product separated out was filtered off, washed with cold ethanol and dried. It was recrystallized from ethanol.
Compound 1a: 3-cinnamoyl-2H-chromen-2-one
Yield: 65%; m.p.: $157-159^{\circ} \mathrm{C}$; IR: $\lambda_{\max } 1601 \mathrm{~cm}^{-1}(>\mathrm{C}=\mathrm{O}$ stretching of α, β unsaturated ketone), $1725 \mathrm{~cm}^{-1}$ (δ-lactone carbonyl stretching of coumarin), $1623 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ stretching), $3032 \mathrm{~cm}^{-1}$ (aromatic C-H stretching); Mol. Formula: $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{NO}_{2}$ calculated C, $81.4 ; \mathrm{H}, 5.0 ; \mathrm{N}, 4.1$; Found C, $81.6 ; \mathrm{H}, 4.8 ; \mathrm{N}, 4.0$; NMR, 3.5δ (3 H , singlet,protons at C_{6}), $7.5-8.5 \delta$ (10 H , multiplet, 8 aromatic protons and two $-\mathrm{CH}=\mathrm{CH}$ - protons merged), $8.5 \delta\left(1 \mathrm{H}\right.$, singlet, $\left.\mathrm{C}_{4}-\mathrm{H}\right)$.

Compound1b: 8-methoxy-3-(3-(p-tolyl)acryloyl)-2H-chromen-2-one

Yield: 62%; m.p.: $232-34{ }^{\circ} \mathrm{C}$; IR: $\lambda_{\max } 1617 \mathrm{~cm}^{-1}(>\mathrm{C}=\mathrm{O}$ stretching of α, β unsaturated ketone), $1714 \mathrm{~cm}^{-1}$ (δ-lactone carbonyl stretching of coumarin), $1252 \mathrm{~cm}^{-1}$ (C-O-C stretching of methoxyl group), $1612 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ stretching), $3042 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ stretching);Mol. Formula: $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{4}$ calculated C, 74.99; H,5.03; O,19.98; Found C, $74.50 ; \mathrm{H}, 4.8$; O, 19.30; NMR, 3.7 and $3.6 \delta\left(6 \mathrm{H}\right.$, two singlet, two- OCH_{3}), 6.7-7.8 $(9 \mathrm{H}$, multiplet, 7 aromatic protons and two $-\mathrm{CH}=\mathrm{CH}$ - protons merged), $8.65 \delta\left(1 \mathrm{H}\right.$, singlet $\left.\mathrm{C}_{4}-\mathrm{H}\right)$.

Compound 1c: 3-(3-(4-methoxyphenyl)acryloyl)-2H-chromen-2-one
Yield:67\%; m.p.:78-80 ${ }^{\circ} \mathrm{C}$; IR: $\lambda_{\text {max }} 1620 \mathrm{~cm}^{-1}(>\mathrm{C}=\mathrm{O}$ stretching of α, β unsaturated ketone), $1711 \mathrm{~cm}^{-1}$ (δ-lactone carbonyl stretching of coumarin), $1253 \mathrm{~cm}^{-1}$ (C-O-C stretching of methoxyl group), $1614 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ stretching), $3045 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ stretching);Mol. Formula: $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{4}$ calculated C, 74.50; H,4.61; O,20.89; Found C, 74.26; H, 4.8; O, 20.33; NMR, 3.6 and 3.8δ (6 H , two singlet), $6.5-8.2 \delta\left(7 \mathrm{H}\right.$, multiplet, two- $\mathrm{OCH}_{3} 7$ aromatic protons and two $-\mathrm{CH}=\mathrm{CH}$ - protons merged), $8.62 \delta\left(1 \mathrm{H}\right.$, singlet $\left.\mathrm{C}_{4}-\mathrm{H}\right)$.

Compound 1d: 8-methoxy-3-(3-(4-nitrophenyl)acryloyl)-2H-chromen-2-one

Yield: 58%; m.p.:167-168 ${ }^{\circ} \mathrm{C}$; IR: $v \max 1610 \mathrm{~cm}^{-1}(>\mathrm{C}=\mathrm{O}$ stretching of α, β unsaturated ketone), $1360 \mathrm{~cm}^{-1}$ ($\mathrm{C}-\mathrm{NO}_{2}$ stretching), $1720 \mathrm{~cm}^{-1}$ (δ-lactone carbonyl stretching of coumarin), $1615 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ stretching), $3030 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ stretching).Mol. Formula: $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{NO}_{2}$ calculated C, 81.4; H,5.0; N,4.1; Found C, 81.6;H, 4.8; N, 4.0; NMR: $3.9 \delta(3 \mathrm{H}$, singlet, $-\mathrm{OCH}_{3}$), $6.9-8.1 \delta(9 \mathrm{H}$, multiplet, 7 aromatic protons and two $-\mathrm{CH}=\mathrm{CH}$ - protons merged), $8.7 \delta\left(1 \mathrm{H}\right.$, singlet, $\left.\mathrm{C}_{4}-\mathrm{H}\right)$.
Compound 1e: 3-(3-(3,4-dimethoxyphenyl)acryloyl)-2H-chromen-2-one
Yield:55\%; m.p.:161-162 ${ }^{\circ} \mathrm{C}$; IR: $\lambda_{\max } 1604 \mathrm{~cm}^{-1} \quad(>\mathrm{C}=\mathrm{O}$ stretching of α, β unsaturated ketone), $1253 \mathrm{~cm}^{-1}$ (C-O-C stretching of methoxyl group), $1726 \mathrm{~cm}^{-1}$ (δ-lactone carbonyl stretching of coumarin), $1632 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ stretching), $3057 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ stretching); Mol. Formula: $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{5}$ calculated C, 71.42.4; H,4.80; O,23.78; Found C, 71.11; H, 4.9; O, 24.21; NMR, 3.8 and 3.8δ ($9 H$, two singlet), $6.2-8.1 \delta$ ($8 H$, multiplet, 6 aromatic protons and two $-\mathrm{CH}=\mathrm{CH}$ - protons merged), $8.8 \delta\left(1 \mathrm{H}\right.$, singlet, $\left.\mathrm{C}_{4}-\mathrm{H}\right)$.

Compound 1f: 8-methoxy-3-((2E, 4E)-5-phenylpenta-2, 4-dienoyl)-2H-chromen-2-one

Yield: 60%; m.p.:148-149 ${ }^{\circ} \mathrm{C}$; IR: $\lambda_{\max } 1615 \mathrm{~cm}^{-1}(>\mathrm{C}=\mathrm{O}$ stretching of α, β unsaturated ketone), $1715 \mathrm{~cm}^{-1}$ (δ-lactone carbonyl stretching of coumarin), $1250 \mathrm{~cm}^{-1}$ (C-O-Cstretching of methoxyl group), $1605 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ stretching), $3045 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ stretching); Mol. Formula: $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{NO}_{2}$ calculated C, 81.4; H,5.0; N,4.1; Found C, 81.6; H, 4.8; N, 4.0; NMR $3.98\left(3 H\right.$, singlet, $\left.-\mathrm{OCH}_{3}\right), 6.9-7.9 \delta(12 \mathrm{H}$, multiplet, 8 aromatic protons and 4 H of two $-\mathrm{CH}=\mathrm{CH}-$ protons merged), $8.60 \delta\left(1 \mathrm{H}\right.$, singlet, $\left.\mathrm{C}_{4}-\mathrm{H}\right)$.
Compound 1g: 3-(3-(p-tolyl) acryloyl)-2 \mathbf{H}-chromen-2-one
Yield: 60%; m.p. $: 159-160{ }^{\circ} \mathrm{C}$; IR: $\lambda_{\max } 1613 \mathrm{~cm}^{-1}$ ($>\mathrm{C}=\mathrm{O}$ stretching of α, β unsaturated ketone), $1720 \mathrm{~cm}^{-1}$ (δ-lactone carbonyl stretching of coumarin), $1256 \mathrm{~cm}^{-1}$ (C-O-C stretching of methoxyl group), $1618 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ stretching), $3043 \mathrm{~cm}^{-1}$ (aromatic C-H stretching); Mol. Formula: $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3}$ calculated C, 78.61 ; H,4.86; O,16.53; Found C, 78.98; H, 4.24; O, 16.75; NMR, 3.5 and 3.7δ (6 H , two singlet), 6.2-7.5 $\left(7 \mathrm{H}\right.$, multiplet, two- $-\mathrm{OCH}_{3}, 7$ aromatic protons and two $-\mathrm{CH}=\mathrm{CH}$ - protons merged), $8.69 \delta\left(1 \mathrm{H}\right.$, singlet $\left.\mathrm{C}_{4}-\mathrm{H}\right)$.

Compound 1h: 8-methoxy-3-(3-phenylpropanoyl)-2H-chromen-2-one

Yield: 60%; m.p. $: 148-149{ }^{\circ} \mathrm{C}$; IR: $\lambda_{\max } 1605 \mathrm{~cm}^{-1}(>\mathrm{C}=\mathrm{O}$ stretching of α, β unsaturated ketone), $1720 \mathrm{~cm}^{-1}$ (δ-lactone carbonyl stretching of coumarin), $1620 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ stretching), $3035 \mathrm{~cm}^{-1}$ (aromatic C-H stretching); Mol. Formula: $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{NO}_{2}$ calculated C, $81.4 ; \mathrm{H}, 5.0 ; \mathrm{N}, 4.1$; Found C, $81.6 ; \mathrm{H}, 4.8$; N, 4.0; NMR, $3.9 \delta\left(3 \mathrm{H}\right.$, singlet, $-\mathrm{OCH}_{3}$), 7.0-8.0 $(10 \mathrm{H}$, multiplet, 8 aromatic protons and two $-\mathrm{CH}=\mathrm{CH}$ - protons merged), $8.7 \delta\left(1 \mathrm{H}\right.$, singlet, $\left.\mathrm{C}_{4}-\mathrm{H}\right)$.
Compound 1i: 3-(3-(4-nitrophenyl)acryloyl)-2H-chromen-2-one
Yield: 56\%; m.p.: $152-153{ }^{\circ} \mathrm{C}$; IR: $v_{\max } 1615 \mathrm{~cm}^{-1}(>\mathrm{C}=\mathrm{O}$ stretching of α, β unsaturated ketone), $1365 \mathrm{~cm}^{-1}\left(\mathrm{C}-\mathrm{NO}_{2}\right.$ stretching), $1715 \mathrm{~cm}^{-1}$ (δ-lactone carbonyl stretching of coumarin), $1612 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ stretching), $3024 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ stretching).Mol. Formula: $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{NO}_{5}$ calculated C, 67.29 ; H,3.45; N,4.36; O,24.90; Found C, $68.11 ; H, 3.68$; N, 4.38;O,25.07; NMR: $4.2 \delta\left(3 \mathrm{H}\right.$, singlet,protons at $\left.\mathrm{C}_{6}\right), 6.7-8.0 \delta(9 \mathrm{H}$, multiplet, 7 aromatic protons and two $-\mathrm{CH}=\mathrm{CH}-$ protons merged), $8.9 \delta\left(1 \mathrm{H}\right.$, singlet, $\left.\mathrm{C}_{4}-\mathrm{H}\right)$.

Compound 1i: 8-methoxy-3-(3-(4-methoxyphenyl)acryloyl)-2H-chromen-2-one
Yield: 65%; m.p.: $151-152^{\circ} \mathrm{C}$; IR: $\lambda_{\max } 1619 \mathrm{~cm}^{-1}(>\mathrm{C}=\mathrm{O}$ stretching of α, β unsaturated ketone), $1715 \mathrm{~cm}^{-1}$ (δ-lactone carbonyl stretching of coumarin), $1250 \mathrm{~cm}^{-1}$ (C-O-C stretching of methoxyl group), $1610 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ stretching), $3040 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ stretching). Mol. Formula: $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{NO}_{2}$ calculated C, 81.4; H,5.0; N,4.1; Found C, 81.6;H, 4.8; N, 4.0; NMR, 3.8 and $3.9 \delta\left(6 H\right.$, two singlet, two- $\left.\mathrm{OCH}_{3}\right), 6.8-8.0 \delta(9 \mathrm{H}$, multiplet, 7 aromatic protons and two -$\mathrm{CH}=\mathrm{CH}-$ protons merged), $8.62 \delta\left(1 \mathrm{H}\right.$, singlet $\left.\mathrm{C}_{4}-\mathrm{H}\right)$.

Compound 1k: 3-cinnamoyl-2H-chromen-2-one

Yield: 69%; m.p.: $169-70^{\circ} \mathrm{C}$; IR: $\lambda_{\max } 1612 \mathrm{~cm}^{-1}(>\mathrm{C}=\mathrm{O}$ stretching of α, β unsaturated ketone), $1712 \mathrm{~cm}^{-1}$ (δ-lactone carbonyl stretching of coumarin), $1254 \mathrm{~cm}^{-1}$ (C-O-Cstretching of methoxyl group), $1608 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ stretching), $3047 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ stretching);Mol. Formula: $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{3}$ calculated C, 78.25 ; H,4.38; O,17.37; Found C, 78.26; H, 4.28; O, 17.56; NMR $4.2 \delta(3 H$, singlet), 6.7-7.8 $(12 \mathrm{H}$, multiplet, 8 aromatic protons and 4 H of two $-\mathrm{CH}=\mathrm{CH}-$ protons merged), $8.66 \delta\left(1 \mathrm{H}\right.$, singlet, $\left.\mathrm{C}_{4}-\mathrm{H}\right)$.

Compound 11: 3-(3-(3,4-dimethoxyphenyl)acryloyl)-8-methoxy-2H-chromen-2-one

Yield: 58%; m.p.: $165-166{ }^{\circ} \mathrm{C}$; IR: $\lambda_{\max } 1609 \mathrm{~cm}^{-1}((>\mathrm{C}=\mathrm{O}$ stretching of α, β unsaturated ketone $)$, $1250 \mathrm{~cm}^{-1}$ (C-O-C stretching of methoxyl group), $1720 \mathrm{~cm}^{-1}$ (δ-lactone carbonyl stretching of coumarin), $1630 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ stretching), $3055 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ stretching); Mol. Formula: $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{NO}_{2}$ calculated C, 81.4; H,5.0; N,4.1; Found C, 81.6; H, 4.8; N, 4.0; NMR, 3.8 and $3.9 \delta\left(9 H\right.$, two singlet, three- $\left.\mathrm{OCH}_{3}\right), 6.4-8.3 \delta(8 \mathrm{H}$, multiplet, 6 aromatic protons and two -$\mathrm{CH}=\mathrm{CH}-$ protons merged $), 8.6 \delta\left(1 H\right.$, singlet, $\left.\mathrm{C}_{4}-\mathrm{H}\right)$.

2.3 Synthesis of 3-(4-aryl-5H-6,7-dihydrocyclopenta[b]pyridin-2-yl) coumarins. (3a-l).

In a 100 ml round bottom flask equipped with a magnetic stirrer, cyclopentanone (2) (0.006 mole) in glacial acetic acid (15 ml) was taken. To this ammonium acetate (0.06 mole) was added with stirring at room temperature. Then a solution of appropriate coumarin chalcone (1a-1)
(0.006 mole) in glacial acetic acid (15 ml) was added with stirring at room temperature during 15 minutes. The reaction mixture was further stirred for 1 hour and then refluxed for 22 hours at $140^{\circ} \mathrm{C}$. It was then allowed to come to room temperature and was poured into ice-cold water. A sticky mass was separated out which was then extracted with chloroform ($3 \times 30 \mathrm{ml}$). The chloroform layer was then washed with $5 \% \mathrm{NaHCO}_{3}$ and then with water. It was then dried over anhydrous sodium sulphate. The chloroform was removed under reduced pressure. The gummy residue was obtained, which upon column chromatography using silica gel and ethyl acetate-pet. Ether ($60: 80$) ($4: 6$) as an eluent gave compounds (3a-l). The compounds thus obtained were recrystallized from chloroform-hexane.
Compound3a: 3-(4-phenyl-6, 7-dihydro-5H-cyclopenta[b]pyridin-2-yl)-2H-chromen-2-one Yield: 53%; m.p.:232-34 ${ }^{\circ} \mathrm{C}$;IR: $\lambda_{\max } 1725 \mathrm{~cm}^{-1}(\delta$-lactone carbonyl stretching of coumarin), $1610 \mathrm{~cm}^{-1}$ and $1440 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ stretching), $2945 \mathrm{~cm}^{-1}$ (aliphatic $\mathrm{C}-\mathrm{H}$ stretching), $3035 \mathrm{~cm}^{-1}$ (aromatic C-H stretching); Mol. Formula: $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{NO}_{2}$ calculated C, 81.4; H,5.0; N,4.1; Found C, 81.6 ;H, 4.8; N, 4.0;); NMR: 2.0-2.6 (2 H , multiplet, protons at $\mathrm{C}_{6}{ }^{\prime}$), 3.0$3.6 \delta\left(4 H\right.$, multiplet, protons at $\mathrm{C}_{5}{ }^{\prime}$ and C_{7} '), 6.6-8.5 $(11 \mathrm{H}$, multiplet, 10 aromatic protons + $\mathrm{C}_{4} \mathrm{H}$).
Compound3b: 8-methoxy-3-(4-(methyl (phenyl) phosphanyl)-6, 7-dihydro-5Hcyclopenta[b] pyridine-2-yl)-2H-chromen-2-one;
Yield: 63%; m.p.:239-40 ${ }^{\circ} \mathrm{C}$; IR: $\lambda_{\max } 1720 \mathrm{~cm}^{-1}$ (δ-lactone carbonyl stretching of coumarin), $1635 \mathrm{~cm}^{-1}$ and $1425 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ stretching), $1245 \mathrm{~cm}^{-1}$ (C-O-C stretching), $2930 \mathrm{~cm}^{-1}$ (aliphatic C-H stretching), $3010 \mathrm{~cm}^{-1}$ (aromati C-H stretching). Mol. Formula: $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{3}$ calculated C, $78.3 ; \mathrm{H}, 5.5 ; \mathrm{N}, 3.6$; Found C, $78.5 ; \mathrm{H}, 5.3$; N, 3.7; NMR: 1.9-2.68 (5H, multiplet, two protons at $\mathrm{C}_{6}{ }^{\prime}$ and aromatic methyl proton signals merged), 2.9-3.6 $(4 \mathrm{H}$, multiplet, protons at $\mathrm{C}_{5}{ }^{\prime}$ and $\left.\mathrm{C}_{7}{ }^{\prime}\right), 3.9 \delta\left(3 \mathrm{H}\right.$, singlet, $\left.-\mathrm{OCH}_{3}\right), 6.8-8.8 \delta(9 \mathrm{H}$, multiplet, 8 aromatic protons $+\mathrm{C}_{4}-\mathrm{H}$).
Compound3c: 8-methoxy-3-(4-(methyl (phenyl) phosphanyl)- 6,7- dihydro -5H-cyclopenta [b]pyridin-2-yl)- 2H-chromen -2-one
Yield: 58%; m.p.:228-29 ${ }^{\circ} \mathrm{C}$; IR: $\lambda_{\max } 1715 \mathrm{~cm}^{-1}(\delta$-lactone carbonyl stretching of coumarin), $1600 \mathrm{~cm}^{-1}$ and $1430 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ stretching), $1255 \mathrm{~cm}^{-1}$ (C-O-C stretching), $2955 \mathrm{~cm}^{-1}$ (aliphatic C-H stretching), $3030 \mathrm{~cm}^{-1}$ (aromatic C-H stretching); Mol. Formula: $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{3}$ calculated C, 78.0; H,5.1; N,3.7; Found C,78,1; H,5.2; N,3.5; NMR: 2.0-2.6 (2H, multiplet, protons at $\mathrm{C}_{6}{ }^{\prime}$), 3.0-3.6 (4 H , multiplet, protons at $\mathrm{C}_{5}{ }^{\prime}$ and $\mathrm{C}_{7}{ }^{\prime}$), $3.8 \delta(3 \mathrm{H}$, singlet, OCH_{3}), 6.6-8.7 $\left(10 \mathrm{H}\right.$, multiplet, 9 aromatic protons $\left.+\mathrm{C}_{4}-\mathrm{H}\right)$.
Compound3d: 8- methoxy-3-(4-(methyl(phenyl) phosphanyl) -6,7-dihydro-5cyclopenta[b] pyridin-2-yl)- 2H-chromen-2 -one
Yield: 55%; m.p.: $230-31^{\circ} \mathrm{C}$; IR: $\lambda_{\max } 1705 \mathrm{~cm}^{-1}$ (δ-lactone carbonyl stretching of coumarin), $1615 \mathrm{~cm}^{-1}$ and $1425 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ stretching), $1350 \mathrm{~cm}^{-1}$ ($\mathrm{C}-\mathrm{NO}_{2}$ stretching), $1245 \mathrm{~cm}^{-1}$ (C-O-C stretching), $2925 \mathrm{~cm}^{-1}$ (aliphatic C-H stretching), $3060 \mathrm{~cm}^{-1}$ (aromatic C-H stretching);Mol. Formula: $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$ calculated C, 69.5; H,4.3; N,6.7; Found C, 69.7; H,4.; N, 6.9; NMR: 1.8-2.5 $\left(2 \mathrm{H}\right.$, multiplet, protons at $\mathrm{C}_{6}{ }^{\prime}$), 2.8-3.6 $\left(4 \mathrm{H}\right.$, multiplet, protons at $\mathrm{C}_{5}{ }^{\prime}$ and $\left.\mathrm{C}_{7}{ }^{\prime}\right)$, $3.8 \delta\left(3 \mathrm{H}\right.$, singlet, $\left.-\mathrm{OCH}_{3}\right), 6.8-8.6 \delta\left(9 H\right.$, multiplet, 8 aromatic protons $\left.+\mathrm{C}_{4}-\mathrm{H}\right)$.
Compound3e: 3-(4-(3, 4-dimethoxyphenyl)-6, 7-dihydro-5Hcyclopenta[b]pyridin-2-yl)-2Hchromen -2-one
Yield: 61%; m.p.:202-04 ${ }^{\circ} \mathrm{C}$; IR: $\lambda_{\max } 710 \mathrm{~cm}^{-1}$ (δ-lactone carbonyl stretching of coumarin), 1630 cm^{-1} and $1440 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ stretching), $1255 \mathrm{~cm}^{-1}$ (C-O-Cstretching), $2945 \mathrm{~cm}^{-1}$ (aliphatic C-H stretching), $3050 \mathrm{~cm}^{-1}$ (aromatic C-H stretching); Mol. Formula: $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{4}$ calculated C, 75.1; H,5.3; N,3.5; Found C,75.8;H, 5.4; N, 3.3; NMR:1.8-2.6 ($2 H$, multiplet,
protons at $\mathrm{C}_{6}{ }^{\prime}$), 2.8-3.6 (4 H , multiplet, protons at $\mathrm{C}_{5}{ }^{\prime}$ and $\mathrm{C}_{7}{ }^{\prime}$), $3.8 \delta\left(6 \mathrm{H}\right.$, singlet, two- OCH_{3}), 6.7-8.6 $\delta\left(9 H\right.$, multiplet, 8 aromatic protons $\left.+\mathrm{C}_{4}-\mathrm{H}\right)$.

Compound3f:8-methoxy-3-(4-styryl-6,7-dihydro- 5H-cyclopenta[b]pyridine -2-yl)-2H-chromen- 2-one
Yield: 60%; m.p.:233-34 ${ }^{\circ} \mathrm{C}$; IR: $\lambda_{\max } 1720 \mathrm{~cm}^{-1}\left(\delta\right.$-lactone, carbonyl of coumarin), $1615 \mathrm{~cm}^{-1}$ and $1435 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ stretching), $1240 \mathrm{~cm}^{-1}$ (C-O-C stretching), $2955 \mathrm{~cm}^{-1}$ (aliphatic C-H stretching), $3035 \mathrm{~cm}^{-1}$ (aromatic C-H stretching); Mol. Formula: $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NO}_{3}$ calculated C, 78.9 ; H,5.3; N,3.5; Found C,78.8; H,5.5; N, 3.4; NMR,1.8-2.5 (2 H , multiplet, protons at $\mathrm{C}_{6}{ }^{\prime}$), 2.8-3.6 (4 H , multiplet, protons at $\mathrm{C}_{5}{ }^{\prime}$ and $\mathrm{C}_{7}{ }^{\prime}$), $3.8\left(3 \mathrm{H}\right.$, singlet, $\left.-\mathrm{OCH}_{3}\right), 6.6-8.8$ $\delta\left(12 \mathrm{H}\right.$, multiplet, 9 aromatic protons $+\mathrm{C}_{4}-\mathrm{H}$ and $-\mathrm{CH}=\mathrm{CH}-$ merged $)$.
Compound 3g: 3-(4-(p-tolyl)-6,7-dihydro-5H-cyclopenta[b]pyridin-2-yl)-2H-chromen-2-one Yield: 54%; m.p.:223-24 ${ }^{\circ} \mathrm{C}$; IR: $\lambda_{\max } 1715 \mathrm{~cm}^{-1}(\delta$-lactone carbonyl stretching of coumarin), $1635 \mathrm{~cm}^{-1}$ and $1425 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ stretching), $2935 \mathrm{~cm}^{-1}$ (aliphatic $\mathrm{C}-\mathrm{H}$ stretching), $3045 \mathrm{~cm}^{-1}$ (aromatic C-H stretching); Mol. Formula: $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{2}$ calculated C,81.5; H,5.4; N,3.9; Found C, $81.7 ; H, 5.2$; N, 3.9; NMR, 1.8-2.68 ($5 H$, multiplet, two protons at $\mathrm{C}_{6}{ }^{\prime}$ and aromatic methyl signals merged), 2.8-3.6 (4 H , multiplet, protons at C_{5} ' and C_{7} '), 6.8-8.6 (10 H , multiplet, 9 aromatic protons $+\mathrm{C}_{4}-\mathrm{H}$).
Compound3h:8-methoxy-3-(4-phenyl-6,7-dihydro-5H-cyclopenta[b]pyridin-2-yl)-2H-chromen-2-one
Yield: 58%; m.p.:238-40 ${ }^{\circ} \mathrm{C}$; IR: $\lambda_{\max } 1735 \mathrm{~cm}^{-1}$ (δ-lactone carbonyl stretching of coumarin), $1620 \mathrm{~cm}^{-1}$ and $1445 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ stretching), $1250 \mathrm{~cm}^{-1}$ (C-O-C stretching), $2945 \mathrm{~cm}^{-1}$ (aliphatic C-H stretching), $3060 \mathrm{~cm}^{-1}$ (aromatic C-H stretching); Mol. Formula: $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{3}$ calculated C, $78.0 ; \mathrm{H}, 5.1$; N,3.7; Found C, $78.1 ; \mathrm{H}, 5.3$; N, 3.5; NMR , 1.8-2.5 $(2 \mathrm{H}$, multiplet, protons at $\mathrm{C}_{6}{ }^{\prime}$), 2.8-3.68 (4 H , multiplet, protons at $\mathrm{C}_{5}{ }^{\prime}$ and $\mathrm{C}_{7}{ }^{\prime}$), $3.9 \delta(3 \mathrm{H}$, singlet, OCH_{3}), 6.8-8.78 (10 H ,multiplet, 9 aromatic protons $+\mathrm{C}_{4}-\mathrm{H}$).
Compound3i:3-(4-(4-nitrophenyl)-6,7-dihydro-5H-cyclopenta[b]pyridin-2-yl)-2H-chromen-

2-one

Yield: 60%; m.p.:234-35 ${ }^{\circ} \mathrm{C}$; IR: $\lambda_{\max } 1720 \mathrm{~cm}^{-1}(\delta$-lactone carbonyl stretching of coumarin), $1635 \mathrm{~cm}^{-1}$ and $1440 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ stretching), $1345 \mathrm{~cm}^{-1}\left(\mathrm{C}-\mathrm{NO}_{2}\right.$ stretching), $2949 \mathrm{~cm}^{-1}$ (aliphatic $\mathrm{C}-\mathrm{H}$ stretching), $3035 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ stretching);Mol. Formula: $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ calculated C,71.8; H,4.2; N,7.2; Found C, 71.9; H,4.1; N,7.3; NMR, 1.8-2.5 $\delta(2 H$, multiplet, protons at $\left.\mathrm{C}_{6}{ }^{\prime}\right)$, 2.8-3.6 $\left(4 \mathrm{H}\right.$, multiplet, protons at $\mathrm{C}_{5}{ }^{\prime}$ and $\left.\mathrm{C}_{7}{ }^{\prime}\right)$, 6.8-8.6 $(10 \mathrm{H}$, multiplet, 9 aromatic protons $+\mathrm{C}_{4}-\mathrm{H}$).
Compound 3i: 8-methoxy-3-(4-(4-methoxyphenyl)-6,7-dihydro-5H-cyclopenta[b]pyridin-2-yl)-2H-chromen-2-one
Yield: 75.1%; m.p.: $224-25^{\circ} \mathrm{C}$; IR: $\lambda_{\max } 1710 \mathrm{~cm}^{-1}$ (δ-lactone carbonyl stretching of coumarin), $1625 \mathrm{~cm}^{-1}$ and $1425 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ stretching), $1245 \mathrm{~cm}^{-1}$ (C-O-C stretching), $2930 \mathrm{~cm}^{-1}$ (aliphatic C-H stretching), $3055 \mathrm{~cm}^{-1}$ (aromatic C-H stretching); Mol. Formula: $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{4}$ calculated C, 75.1; H,5.3; N,3.5; Found C, 75.0 ; H, 5.4; N, 3.3; NMR, 1.8-2.6 $\delta(2 \mathrm{H}$, multiplet, protons at C^{\prime} '), 2.8-3.6 (4 H , multiplet, protons at $\mathrm{C}_{5}{ }^{\prime}$ and $\left.\mathrm{C}_{7}{ }^{\prime}\right)$, 3.8 and $3.9 \delta(6 \mathrm{H}$, two singlet, two- OCH_{3}), 6.7-8.68 (9 H , multiplet, 8 aromatic protons $+\mathrm{C}_{4}-\mathrm{H}$).
Compound 3k: 3-(4-styryl-6,7-dihydro-5H-cyclopenta[b]pyridin-2-yl)-2H-chromen-2-one Yield:52 \%; m.p.:224-25 ${ }^{\circ} \mathrm{C}$; IR: $\lambda_{\max } 1725 \mathrm{~cm}^{-1}$ (δ-lactone carbonyl stretching of coumarin), $1605 \mathrm{~cm}^{-1}$ and $1430 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ stretching), $2930 \mathrm{~cm}^{-1}$ (aliphatic $\mathrm{C}-\mathrm{H}$ stretching), $3045 \mathrm{~cm}^{-1}$ (aromatic C-H stretching);Mol. Formula: $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}_{2}$ calculated C, 82.1; H,5.2; N,3.8; Found C, 82.3; H, 5.0; N, 3.8; NMR: 1.8-2.6 ($2 H$, multiplet, protons at $\mathrm{C}_{6}{ }^{\prime}$), 2.8-
3.6(4H, multiplet, protons at $\mathrm{C}_{5}{ }^{\prime}$ and $\left.\mathrm{C}_{7}{ }^{\prime}\right), 6.5-8.6\left(13 \mathrm{H}\right.$, multiplet, 10 aromatic protons $+\mathrm{C}_{4}-\mathrm{H}$ and $-\mathrm{CH}=\mathrm{CH}$ protons merged).

Compound31:3-(4-(3, 4-dimethoxyphenyl)-6,7-dihydro-5H-cyclopenta[b]pyridin-2-yl)-8-

 methoxy-2H-chromen-2-oneYield: 57%; m.p.: $185-87^{\circ} \mathrm{C}$; IR: $\lambda_{\max } 1710 \mathrm{~cm}^{-1}(\delta$-lactone carbonyl stretching of coumarin), $1625 \mathrm{~cm}^{-1}$ and $1435 \mathrm{~cm}^{-1}$ (aromatic aromatic $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ stretching), $1240 \mathrm{~cm}^{-1}$ (C-O-C stretching), $2945 \mathrm{~cm}^{-1}$ (aliphatic C-H stretching), $3020 \mathrm{~cm}^{-1}$ (aromatic C-H stretching); Mol. Formula: $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{5}$ calculated C,72.7; H,5.4; N,3.2; Found C, 72.5; H,5.5; N, 3.3; NMR, 1.8 $2.5 \delta\left(2 H\right.$, multiplet, protons at $\left.\mathrm{C}_{6}{ }^{\prime}\right), 2.8-3.6 \delta\left(4 H\right.$, multiplet, protons at $\mathrm{C}_{5}{ }^{\prime}$ and $\left.\mathrm{C}_{7}{ }^{\prime}\right), 3.8$ and 3.9δ $\left(9 \mathrm{H}\right.$, two singlet, three- $\left.\mathrm{OCH}_{3}\right)$ 6.7-8.5 $\left(8 \mathrm{H}\right.$, multiplet, 7 aromatic protons $\left.+\mathrm{C}_{4}-\mathrm{H}\right)$.

3. Result and discussion

The condensation of coumarin chalcones (1a-1) with cyclopentanone (2) under Krohnke's reaction condition proceeded smoothly and gave the expected (3a-l) in 52-63 \% yield. The structures of all the compounds (3a-1) were confirmed by analytical and spectral data. Thus the reaction of coumarin chalcone (1c) with cyclopentanone (2) gave a compound (3c) as a white solid product.

The IR spectrum of compound (3c) showed a strong band at $1715 \mathrm{~cm}^{-1}$ which is due to carbonyl stretching of the lactone ring present in the coumarin nucleus. The bands observed at $1600 \mathrm{~cm}^{-1}$ and $1430 \mathrm{~cm}^{-1}$ can be assigned to aromatic $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ stretching vibrations respectively. The Compound showed bands at $1255 \mathrm{~cm}^{-1}$ and $1040 \mathrm{~cm}^{-1}$ which can be attributed to asymmetric and symmetric C-O-C stretching due to the methoxyl the group present in the phenyl ring attached at C_{4}. Compound showed a medium band at $835 \mathrm{~cm}^{-1}$ which can be assigned to $\mathrm{C}-\mathrm{H}$ banding vibration for p -disubstituted phenyl ring present at $\mathrm{C}_{4}{ }^{\prime}$. The observed bands at $2955 \mathrm{~cm}^{-1}$ and $3030 \mathrm{~cm}^{-1}$ can be assigned to aliphatic C-H stretching of cyclopentane ring and aromatic $\mathrm{C}-\mathrm{H}$ stretching respectively.

The PMR spectrum (60 MHz) of compound (3c) showed a multiplet between 2.0-2.6 δ which is due to two protons present at C_{6} '. A multiplet observed between 3.0-3.6 δ integrating for four protons is due to the protons attached at $\mathrm{C}_{5}{ }^{\prime}$ and $\mathrm{C}_{7}{ }^{\prime}$. A methoxyl signal appeared as a singlet at 3.8δ. A multiplet observed between $6.8-8.7 \delta(10 H)$ is due to nine aromatic protons and one C_{4} proton of the coumarin nucleus.

The structure of 3 c was further supported by high-resolution PMR $(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ spectral data. The PMR $(300 \mathrm{MHz})$ spectrum of compound 3c multiplet centered at $2.298(2 \mathrm{H})$ is due to two protons attached at C_{6} '. A triplet centered at 3.188 integrating for two protons is due to protons attached at $\mathrm{C}_{5}{ }^{\prime}$. A triplet centered at 3.48δ integrating for two protons is due to protons attached at C_{7}. A methoxyl signal appeared at 3.84δ as a singlet. A multiplet observed between $6.90-8.61 \delta(10 H)$ is due to nine aromatic protons and one C_{4} proton of coumarin nucleus. The coumarin ring protons present at $\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}$, and C_{8} positions forms AA'BB' spin system and therefore the aromatic region appears as a very complex multiplet and hence assignment of individual aromatic protons as well as $\mathrm{C}_{4}-\mathrm{H}$ proton is not possible, however the spectrum shows two clear doublets centered at 6.91δ and 7.65δ which can be assigned as ortho coupled doublets for the protons of para-disubstituted phenyl ring attached at C_{4}. The ${ }^{13} \mathrm{C}$-spectrum of 3 c A signal the appeared at 23.03δ is due to $\mathrm{C}_{6}{ }^{\prime}$ carbon. The $\mathrm{C}_{5}{ }^{\prime}$ and $\mathrm{C}_{7}{ }^{\prime}$ carbons signals appeared at 34.06δ and 35.08δ respectively. A signal that appeared at 55.56δ is for a carbon of $-\mathrm{OCH}_{3}$ present in the compound. The signals appeared at 111.33, 113.44, 114.36, 117.66, 118.30, 124.32, 125.07, $127.40,128.71,129.59,130.19,131.07,136.99,139.77,152.80159 .13$, and 160.42δ
corresponding to seventeen carbons are due to aromatic carbons including C_{3} and C_{4} carbons. The most downfield signal that appeared at 163.57δ can be assigned to the carbonyl carbon of the δ-lactone ring of coumarin. In the absence of ${ }^{13} \mathrm{C}$ DEPT spectra, the assignment of primary, secondary and tertiary carbons was not possible.

Conclusion

Synthesis of various 3-[4-aryl-5H-6, 7, dihydro cyclopenta[b]pyridin-2-yl]coumarins have been carried out by reacting to various chalcones of 3 -acetyl coumarins with cyclopentanone respectively in the presence of ammonium acetate and acetic acid. The synthesis involves Krohnke's mechanism for the formation of pyridine nucleus. All synthesized compounds were analyzed with physico-chemical methods and confirm its structural identity and high yields product. This strategy includes simple reagents and clean reaction conditions of nonpollution in environmentally benign solvents.

Reference

I). Johannes and G. GerhardGer. Offen., 2,013, 262 (1970); CA, 76, 87159z (1972).
II). P.Manfred and V. Christos Ger. Offen., 2,553, 294 (1977); CA, 87, 103365 (1977).
III). F.Bayer A.-G. Fr. Demande., 2,010,602 (1968); CA, 74, 4703g (1971).
IV). N.Otto,D. Alfons,C.W.Schellhammeran B.OttoGer .l, 794 , 396(1974); CA,82, 32468f (1975).
V). U.Hirotoshi,K.TeijiroandK.KenzoKogyoKagakuZasshi,73(10),2200(1970);CA,74,55115z (1971).
VI). S. Kazuaki Japan 7231,391 (1969); CA, 78, 73666s (1973).
VII). E. Sigeharu, S. Katsunobu and S. Goichi Ger. Offen., 2,005,933 (1969); CA, 74,65585s (1971).
VIII). S. S. El-morsy, A. A. Fadda and M. S. El-hossini J. Ind. Chem. Soc., LXV, 699 (1988).
IX). K. H. Sinnur and S. Siddappa Ind. J. Chem., 25B, 894 (1986).
X). F.A. Yassen, F. F. Wasfy and M. E. Moustafa Spectro. Lett., 26(10), 855 (1993); $C A, 120,134212 \mathrm{a}$ (1994).
XI). R. B. Moffett J. Med. Chem., 7, 446 (1964).
XII). R. B. Moffett U. S. 3, 156, 697 (1964); CA, 62, 5257f (1965).
XIII). R. B. Moffett U. S. 3,201,406 (1965); CA, 63, 13220f (1965).
XIV). D. I. Brahmbhatt , G. B. Raolji, S. U. Pandya and U. R. Pandya Ind. J. Chem., 38B, 212-15 (1999).
XV). D. I. Brahmbhatt and U. R. Pandya Ind. J. Chem., 42B, 145-49 (2003).

Received on March 4, 2020.

